
Theoret. Chim. Acta (Bed.) 52, 277-301 (1979) 

THEORETICA CHIMICA ACTA 

~) by Springer-Verlag 1979 

Molecular Model Potentials: Combination of Atomic Boxes 

Lfiszl6 v. Szentpfily 

Fachbereich Physikalische Chemie, Universitiit Marburg, Auf den Lahnbergen, D-3550 
Marburg, Federal Republic of Germany 

A new Combination of Atomic Boxes (CAB) molecular orbital model is 
introduced, having the following characteristics: 

1) Atomic model potentials are one-dimensional potential boxes of finite depth 
UA and of length LA, the box-parameters being chosen to give valence 
electron ionization energies. 

2) Explicit molecular model potentials are constructed by combining all the 
model potentials of the atoms in the molecule. 

3) A minimum computational effort leads to rigorous solutions of the resulting 
Schroedinger equation. 

The model is tested on a large variety of ~r-electron systems containing atoms 
of four rows of  the periodic system. Branched and cyclic molecules are also 
treated. The comparison of the calculated first and higher ionization and first 
excitation energies with the observed data gives the mean deviations 0.540 eV 
and 0.388 eV resp. 

The common physical basis of the CAB and the model-pseudopotential methods 
is discussed. The constant potential within the box is a consequence of the 
partial cancellation of the electrostatic potential by a repulsive term representing 
the Pauli principle. It is shown that CAB is not restricted to ~r-electrons but can 
be extended to e-electron systems as well. 

Key words: Atomic boxes 

1. Introduction 

Most quantum chemical models predict either the ground state properties or the 
excitation energies of molecules, but not both. In all methods of the Hartree-Fock 
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type, the ground state energies are reasonably obtained, whereas little or no physical 
meaning can be attributed to the unoccupied "vir tual"  orbitals. In order to solve 
the problem, it is necessary to include highly time consuming configuration 
interaction calculations. Semiempirical LCAO models have to be parametrized 
differently for ground and excited states, e.g. Hiickel calculations use quite different 
resonance integrals ft. Free electron molecular orbital (FEMO) models [1-4] have 
had surprising success in calculating excitation energies of ~r-electron systems 
especially for rather complex cyclic [4-8], branched [6, 7, 9, 10] and heteromole- 
cules [7, 11, 12]. However, as long as infinite walls are assumed, FEMO models 
cannot give absolute energies but only energy differences. Finite potential walls 
were introduced [13, 14], but the potential box had to be refitted to each molecule 
separately. Thus FEMO's predicting power in extrapolating the properties of other 
homologous molecules was lost. 

On the other hand, the relatively simple model-pseudopotential method has been 
remarkably successful in calculating both ground and excited state energies. It was 
first introduced by Hellmann [15-18] and Gomb~ts [19, 20] who both started out 
from Thomas-Fermi [21, 22] and Thomas-Fermi-Dirac [23] models. Semiempiri- 
tally adjusted model-pseudopotentials have become extremely fruitful in solid state 
band calculations [24-32] and have been used as a method for obtaining descrip- 
tions of atomic and molecular valence shell and Rydberg states [15, 20, 33-41]. 

The aim of this paper is to present a semiempirical molecular orbital model 
permitting accurate calculations of both ionization and excitation energies with the 
same set of parameters and a minimum of mathematics. A Combination of Atomic 
Boxes (CAB) molecular orbital model is introduced: atoms are represented by 
potential boxes and explicit molecular model potentials are constructed with all the 
potential boxes of the atoms by bringing the box centers into the observed 
equilibrium distances. 

It is shown in Sect. 3 that this model gives very satisfactory results for the ground 
and first excited states of a large variety of rr-electron systems. In Sect. 4, the CAB 
model is shown to be a synthesis of the model-pseudopotential and free-electron 
methods. The crucial assumption of a constant potential is justified as a basically 
correct approximation for both zr- and e-electron systems. 

2. Combination of Atomic Boxes Model 

2.1. Atomic Boxes and Their Parametrization 

It has been pointed out that the accuracy obtainable with a given model potential 
depends on whether it imposes the proper boundary conditions [37]. As the simplest 
way to fulfill this requirement, an atomic model potential is introduced as a one- 
dimensional potential box of finite depth UA and of length LA, the box-parameters 
being chosen to give valence electron ionization energies. 

The Schroedinger equation (Eq. (2)) of an atomic box of finite depth (Fig. 1) is 
particularly easy to solve. It has been treated as a pedagogically valuable exercise 
in many textbooks on quantum mechanics [42-45]. 



Molecular Model Potentials: Combination of Atomic Boxes 279 

Let x = 0 be at the centre of the box and lA = � 8 9  half of its length, then 

U ( x ) = { o U A  for[x[ ~<lA 
for Ix[ > 1A (1) 

[ h~d2 ] 
2rn dx 2 + U(x) ~b,~(x) = E,~. ~b.(x). (2) 

The eigenfunctions of Eq. (2) and their first derivatives must be continuous 
everywhere and vanish for Ix[ --~ 

~b.(x) = {a.  cos (k,~x + 3.) for Ix[ ~< IA 
a. cos (k.lA + 3.) e-a.  (Ixl -zA) for Ix[ > lA (3) 

with 

k~ = 2m(UA + E.) 
h2 (4a) 

2mlE. I 2mlP. 
A~= h2 - h2 (4b) 

i for odd n 
(4c) 

8n = for even n 

Outside the box, the eigenfunctions ~b~ diminish exponentially, i.e. proper boundary 

conditions are imposed. The exponent is proportional to -a,/]E~[ = -~r IP,~ 
being the ionization potential of the nth level, therefore, ~h~ expands as IPn decreases. 
The ~ are orthogonal and the normalization factor is: 

Fig. 1. Eigenenergies and eigenfunctions of an atomic 
potential box 
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The eigenvalues En are obtained by the requirement that @,(x) and ~b~(x) are also 
continuous at the boundaries Ixl = IA. Consequently, 

cot knlA = k~ for odd n, (6a) 

tan k,~la = kn for even n. (6b) 
An 

Using an addition-theorem, Eqs. (6a) and (6b) can be transformed into Eq. (7) valid 
for all n's 

2 cot 2k,~IA = 2 cot k ,LA = k~ - 2~ 
kn. an " (7) 

The equations can be solved either numerically or graphically [43, 45]. 

There are different possible ways to parametrize an atomic potential box, namely 
by adjusting the box-parameters UA and LA to either atomic or homonuclear 
diatomic data. Whereas the latter may have the advantage of a better account for 
the electronic interactions, atomic data do not need to be regarded as parameters, 
but can be treated as free information for molecular studies [46]. Therefore, it is 
desirable to investigate to what accuracy molecular properties can be calculated by 
starting out from atomic data. This will be done by studying ~r-electron systems. 

Though model potentials are eigenvalue dependent in principle [16, 20], this 
dependence will be neglected to a first approximation as far as np- and (n + 1)d- 
electrons are concerned. Thus, UA and LA are fixed by fitting the first and second 
eigenenergies of the atomic potential box (Fig. 1) to the energies of the np- and 
(n + 1)d-electrons resp. The physical reasons for this correspondence are discussed 
in Sect. 4. In accordance with the eigenvalue dependence, the energies of the other 
electrons cannot be described by the same model potential. 

As an example, let us consider an atom of the configuration K(2s)2(2p) m. In general, 
there are several states arising from this configuration. At the present state of the 
model, no splitting between them is calculated and only average exchange and 
correlation interactions are considered. Therefore, the energies of all these states 
are averaged, appropriate weighting being given for multiplicity. The difference 
between the average energy levels of the atom and its ion has been considered as 
the appropriate average ionization energy for semiempirical calculations [47]. The 
values (Table 1) can either be found in the literature [47] or are calculated from the 
spectroscopic states of the atoms and ions. 

The average ionization energies are close to the valence state ionization energies 
[48-54] but the former are well known also for the unoccupied (n + 1)d-states and 
have the advantage to be independent of the particular ways to obtain valence 
states. For nitrogen, however, the average ionization energy should lead to wrong 
results by grossly underestimating the trivalent character of this atom. The difference 

between the average ionization energy IP2~ = 13.19 eV and the valence state value 
for a 2prr-electron IP2p ~- 14.15 eV [52] is exceptionally large. In order to account 
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Table 1. Average ionization energies IP, atomic box-parameters LA, UA, electroaffinities EA and 
electronegativities X 

IP--~p IP-"~(,~ + 1)a EA,p UA 
Atom (eV) ~ (eV)" LA (/~) UA (eV) (eV) b X~ ~ Xaga 2.87XAg + X• 

B 8.30 1.50 2.458 11.07 4.00 2.01 1.13 
C 10.67 1.51 2.056 14.51 5.57 2.50 1.14 
N 14.15 b 1.51 1.700 19.59 &10 b 3.07 1.15 
O 15.85 1.54 1.584 22.06 9.11 3.50 1.15 
F 18.66 1.51 1.424 26.24 11.08 4.10 1.15 
Si 7.76 1.12 2.420 10.53 4.13 1.74 1.15 
P 9.64 e - -  (2.16) (13.1) 5.46 2.06 (1.15) 
S 11.61 1.02 1.825 16.24 6.99 2.44 1.16 
C1 13.65 0.98 1.640 19.30 8.71 2.83 1.15 
Se 10.77 0.99 1.906 15.04 2.20 6.49 2.48 1.11 
Br 12.27 (I.0) 1.75 17.2 3.55 7.91 2.74 (1.10) 
Te 9.68 1.06 2.064 13.38 2.30 5.99 2.01 1.14 
J 11.16 0.90 1.84 15.7 3.21 7.19 2.21 1.16 
Xe 12.78 1.10 1.734 17.91 

h 

IP(H2)2~,u 1P(H2)aa,~9 
(eV) r (eV) f L~ (/~) Ur~ (eV) 

H 3.424 1.414 4.097 4.168 

a Ref. [55]. b Refs. [52] and [54]. ~ Ref. [58]. d Ref. [57]. e Ref, [61]. ~ Ref. [59], 

for  the t r ivalent  charac ter  o f  ni t rogen,  I shall use the value IP2p = 14.15 eV. The 
average ioniza t ion  energies and  the cor responding  UA and LA values are compi led  
in Table  1. 

I t  should  be no ted  tha t  there is a close re la t ionship  between the UA values and the 
empir ica l  (orbi tal-)  electronegativi t ies  X. Actual ly ,  UA is p ropor t iona l  to the 
ar i thmet ic  mean  o f  the electronegativi t ies  Xu according  to Mul l iken  [49] and  Xp 
accord ing  to Paul ing [56], the la t ter  being as usual  mul t ip l ied  by 2.87 to ob ta in  
equal  weight. This is shown in Table  1, where Paul ing 's  thermal  da ta  are subst i tuted 
by  the a lmos t  identical  bu t  more  precise da ta  XAR by Al l red  and  Rochow [57]. I t  
is app rop r i a t e  to compare  UA and  electronegativit ies,  since the ionici ty  and the 
d ipole  moments  o f  molecules,  often analyzed in terms of  electronegat ivi ty differen- 
ces, will depend  on the difference A U = UA -- UB. We can use the p ropor t iona l i ty  
between UA and  X as a tool  to calculate the box-paramete rs  in cases where the 
(n + 1)d-terms have not  been observed.  This is the case for  phosphorus .  

Hydrogen  a toms  represent  a special case, since they do not  contr ibute  ~r-electrons 
to the molecule. But the differences between the ~r-electron ioniza t ion  and  excitat ion 
energies of  e.g. C2, C2H2 and  C2H~ or  C3 and  C3H4 are most  evident  and  character ize  
the impor tance  o f  the hydrogen a toms  for  the energy levels o f  ~-electron systems. 

In  most  models  for  ~r-electron systems and  especially in F E M O ,  hydrogen a toms  
are not  considered at  all. In  this model ,  each hydrogen  a tom is taken  into account  
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by an atomic box. It will be shown in Sect. 4 that a potential box would be appro- 
priate for the 2p and 3d states of hydrogen. However, by adjusting to the atomic 
ionization energies of hydrogen, exchange and correlation interactions, which are 
present in molecules, would be totally neglected. Therefore, it is better to adjust Ua 
and LE to the 7r-electron Rydberg states of the hydrogen molecule i.e. 2prr~ and 3drrg. 
It can then be expected that all the ,r-electrons of more complex molecules will 
experience about the same model potential (cf. Sect. 4). 

The multiplicity weighted averages of the hydrogen molecule ionization energies 

are IP---2p~, = �88 + 3.3.557) eV = 3.424 eV [59] at ~e = 1.037 ./k and 7-ffsa,, = 
1.414 eV at fe = 1.060/~. Having calculated the values Ua2 = U~ = 4.168 eV and 
Ln 2 = 5.134/~, we can get Lr~ by subtracting the observed equilibrium distance r,. 
Thus the box length La = 4.097/~ is obtained. 

As compared to the potential boxes of the other elements, the hydrogen box is in 
fact shallow and wide, as if the proton were screened to a major extent. It describes 
the nonpenetrability of the hydrogen atom to rr-electron systems too. 

2.2. Unbranched Molecules 

Molecular boxes are constructed by bringing the centres of the atomic boxes into 
the equilibrium interatomic distances re. This is shown for N2 in Fig. 2, and for 
other unbranched molecules in Fig. 3. 

At this state of the model, nuclear repulsion and a-bonds are not yet included, the 
molecular geometries used are therefore not calculated but taken from experiment. 
In a subsequent paper, it will be shown that a refined model allows the calculation 
of equilibrium distances re. 

In this model, the energy of a particular bonding orbital is at a minimum for the 
boxes just touching each other, e.g. rAs = �89 + L~). Since this minimum is not 
necessarily coinciding with the minimum of  the molecular potential energy curve, 

N N~N 

I I 

, ; / iP~ : 0.00eV 

1 " ~p:14"lSeV > ~ ~ IP~ =16.04eV 
I u 

- l .  0 +1~ l .  re I. 

i .  : 0.050 Jt r. (obs) : 1.007 ~t 

UN : 19.59 eV 
Fig. 2. The construction of the CAB model potential for the nitrogen molecule. (a) Ref. [52] 
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Fig. 3. Schematic CAB model potentials for 
unbranched molecules 
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the atomic boxes of the ~--electrons can also overlap or leave a gap at the observed 
equilibrium distances. 

In the case of  a gap between the boxes e.g. C12 (Table 2), the potential barrier 
reaches the vacuum level (Fig. 3, II). It  can be seen that the molecules dissociate 
into their atomic constituents. This is not the case in LCAO MO or even in H F  
calculations, where the calculated dissociation products are not only the observed 
atoms. 

I f  the boxes of  two atoms A and B overlap (Fig. 3, Ill) ,  the combined box is divided 
into two parts a and b of  the depths UA and Un respectively. Their ratio is postulated 
to be: 

a LA 
b - %" (8) 

For polyatomic molecules with overlapping boxes and A the first, Z the last a tom 
of  the chain, this is generalized to: 

a : b : c : . . .  :z = L A : L B : L e : ' "  :Lz. (9) 

The total length L~ol of  the molecular model potential is: 

Lmol = �89 + Lz) + ~ r,,,. (10) 

Thus, U(x) is clearly defined and there is no open parameter left. The bond lengths 
and the values a and b for the model potentials of  unbranched molecules (Fig. 3) 
are compiled in Table 2. 
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Table 2. Bond lengths and model potentials of unbranched 
molecules 

Model 
poten- 

Molecule re(/~) a tial b a(A) b b(A) b 

B2 1.589 I 4.047 - -  
C2 1.242 I 3.298 - -  
Ca 1.277 I 4.610 - -  
Na 1.098 I 2.798 - -  
Oz 1.208 I 2.792 - -  
03 1.278 I 4.140 - -  
F2 1.435 II 1.424 0.011 
Si2 2.252 I 4.672 - -  
P2 1.894 I 4.06 - -  
$2 1.889 II 1.825 0.064 
C12 1.988 II 1.640 0.348 
Se2 2.152 II 1.906 0.246 
Br~ 2.283 II 1.75 0.54 
Tea 2.59 II 2.06 0.53 
J2 2.666 II 1.84 0.83 
HB 1.226 III 2.815 1.689 
HC 1.198 III 2.847 1.428 
HN 1.038 III 2.782 1.154 
HO 0.970 III 2.748 1.062 
HF 0.917 III 2.729 0.949 
HS 1.350 III 2.982 1.329 
HC1 1.275 III 2.959 1.184 
HBr 1.414 III 3.04 1.30 
HJ 1.609 III 3.16 1.42 
HBO HB: 1.16 ~ III 1.51 0.99 

BO ." 1.21 c 
CN 1.172 III 1.670 1.380 
CO 1.128 III 1.665 1.283 
CS 1.534 III 1.841 1.634 
NO 1.151 III 1.446 1.347 
N20 NN: 1.126 III 2.697 1.257 

NO: 1.186 
SO 1.493 III 1.712 1.486 

(:~Bf 1.029 IV 2.460 1.235 
CH2 1.06 2.50 1.26 
NHz 1.024 IV 2.545 1.056 
H20 0.958 IV 2.519 0.974 
HaS 1.328 IV 2.761 1.230 
H2Se 1.460 IV 2.846 1.324 
H2Te 1.653 IV 2.957 1.490 
NCN 1.232 V 1.569 1.297 
CO2 1.162 V 1.538 1.185 
CS2 1.553 V 1.777 1.577 
C2H2 CC: 1.206 IV 2.469 2.478 

CH: 1.056 
C2N2 CC: 1.389 V 2.954 1.221 

CN: 1.154 
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Table 2---Continued 

Model 
poten- 

Molecule r~(/~) ~ tial b a(/~) b b(A) b 

C2 F2 

C302 

C~H2 

C4N2 

N2F2 

XeFz 

CC: 1.20 V 3.14 1.09 
CF: 1.35 
CC: 1.28 V 4.31 1.11 
CO: 1.19 
C- -C :  1.376 IV 2.495 5.006 
C-~C: 1.205 
CH: 1.056 
C - - C :  1.37 V 5.59 1.16 
C__~-C: 1.19 
CN: 1.14 
NN: 1.25 V 3.02 1.26 
NF:  1.44 

1.90 V 2.38 1.42 

Refs. [59] and [60]. 
b Fig. 3. 
c Calc. value in Ref. [62]. 

The one-dimensional Schroedinger equation can be solved exactly for all possible 
combinations of atomic boxes. The molecular box is split up into regions of 
constant potentials (e.g. U ( x )  = - UA) which belong to the different atoms. 

Let ~bA,.(XA) be part of the eigenfunction ~b.(x) which lies in the region of  U ( x )  = 

- - U  A. 

= ( 1 1 )  
A 

with 

~bA,.(xA) = ~^,. e'~A,- 'xA + 3A,. e -'~A,"'xA (12) 

and with 

k~.,. 2m = ~ - ( U A  - Ie . ) .  (13) 

In the case of U^ - IP~ > 0, ~b ,̂~ is sinusoidal, otherwise it is a combination of two 
exponential functions. It is required that ~b~(x) and 4J~(x) be continuous for all x's. 
The consequence of this requirement is a set of linear equations in ~A,~, 3A,, 
determined by the boundary conditions of the regions with constant potential. This 
set of equations can be evaluated in order to obtain a characteristic equation for 
the eigenvalue-eigenfunction pairs. Thereby the relative values of  the coefficients 
~A,~, flA,~ are obtained. The application of the normalization condition fixes their 
absolute values. 

This will be exemplified by the case of a heteronuclear diatomic molecule AB with 
IP~ < U^ < Uu and re ~< �89 + Lu) as shown in Fig. 3, III. 
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Let us introduce two coordinates Xa with - oo < XA ~< a and xB with - oo < xB ~< b 
in opposite direction to each other and joining at the point XA = a, xB = b. In the 
following, I shall omit the index n of the wavefunction. Considering first the 
coordinate XA with the condition that limxA~- o~ ~b (̂XA) = 0, and using )` of Eq. 
(4a) we find 

= f rA  e+~'xA for XA ~< 0 
(14) 

aA sin (kaXA + 8A) for XA t> 0 

At XA = 0, the continuity conditions impose: 

ffA(0) = VA = aA sin 8A, (15) 

r = YA)` = aAkA COS 8 A. (16) 

By division we obtain 

tan 8A = ~ .  (17) 

The origin of the coordinate xB is treated analogously: 

tan 8~ = k._.~a (18) )`" 

The values ka, kB and )  ̀are not independent but related by the given UA and riB. 
Their absolute values are fixed by the continuity condition at the joint of)CA and Xa 

CA(a) = aA sin (kAa + 8A) = aB sin (kBb + ~ )  = ~B(b), (19) 

$k(a) = k,~aA cos (kAa + 8s) = - k s a ~  cos (k~b + 8~) = - r  (20) 

Except for ~bk(a) = 0 = ~b~(b), we may equate the $/~b' values 

k T, 1 tan (kAa + 8A) + kff 1 tan (kBb + 3B) = 0. (21) 

According to the addition theorem for the tangens function and Eqs. (17) and (18) 
this equals: 

kA + )` tan (kAa) + kB + )` tan (kBb) 
kA)` - k~, tan (kAa) ks), - k~ t an  (kr~b) = O. (22) 

Having determined the eigenenergies for the model-potential, we obtain the coeffi- 
cients aA, as, 9'A, 7S for the eigenfunctions by virtue of the normalization condition 
and Eqs. (19), (20) and (15). For $k(a) = 0 = $~(b), e.g. a = b, UA = Us and n 
odd number, we avoid infinities by equating the ~b'/~b values instead of Eq. (21). 

The equations determining the eigenenergies for other model-potentials (Fig. 3) are 
obtained by similar considerations. They are listed in Table 3 without further 
derivation. Their systematic relations are clarified by introducing: 

kA + A tan (kAa) 
TA = kA" )` - k~ tan (kAa) (23) 
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Table 3. Equations determining the eigenenergies for the 
model potentials of Fig. 3 

Model potential Equation S 

k ,~ 
I 2 c o t ( k a ) - - a  +To = 0  

II 2 coth (,Xb) + kATA + (kATA) -1 = 0 
III 1. 1P > UA HA + TB = 0 

2 . 1 P  < UA T A + T a = 0  
IV I. IP  > UA 2 cot (kBb) - kaHA + (k~HA)-Z = 0 

2. IP  < UA 2 cot (kBb) - kBTA + (kaTA) -1 = 0 
V 1. 1P > UA 2coth (xa) + xTa + (rTB) -~ = 0 

2. IP  < UA 2 cot (kAa) -- kaTs  + (kATB)- ~ = 0 

T a n d / / a r e  defined in Eqs. (23) and (24), respectively. 

287 

for k.~ > 0 and  

K + A tanh  (Ka) (24) 
HA = KA + x 2 tanh  (Ka) 

for 

,~2 = - k . ~  > 0. (25) 

The equat ions on Table 3 are of such simplicity that they can be easily programmed 

on a pocket size calculator e.g. HP  25. 

2 .3 .  B r a n c h e d  M o l e c u l e s  

CAB's  t reatment  of branched molecules can be exemplified by the ethene molecule 
(Fig. 4). Let us introduce separate coordinates x~ for each branch b = 1, 2, 3 

originating at the " jo in t  a t o m "  C and  ending at xo = c0, resp. In  addi t ion to their 

I~ rcr 

:3 H 

Fig. 4. Ethene and cumulenes: CAB model 
potential in the neighbourhood of a branching 
point 
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boundary conditions at the respective %'s, the branch functions ~bb(Xb) are deter- 
mined by two conditions concerning their behaviour in the joint C. Different 
branching conditions have been discussed within the frame of the FEMO model 
[6, 9, 63-66]. In this paper, the branching conditions originally proposed by Kuhn 
[6] are used. The continuity condition demands that the branch functions ~b(Xb) 
assume the same value at their joint C, i.e. for xb = 0 

~bl(xl = 0) = ~b2(x2 = 0) = ~ba(x 3 = 0). (26) 

Kuhn's  second condition concerns the first derivatives ~b~(xb) of the branch functions 
at the joint C 

8 

,,b;(xb = O) = O. (27) 
b = l  

Equation (27) has been discussed as a sufficient though not necessary condition for 
the "conservation of current" and for the orthogonality of  the eigenfunctions [63]. 

I f  a branch represents a bond between two different atoms, it has to be divided in 
two parts belonging to the potential boxes of  the different atoms. In analogy to the 
linear heteroatomic molecules, the lengths of  the overlapping potential boxes (c for 
carbon and h for hydrogen) are postulated to have the ratio: 

c Lo 
= ( 2 8 )  

The length attributed to a joint a tom is the sum of the contributions from each 
branch: 

O 

c = ~ co. (29) 

For ethene, the value of c + 2h is known from Fig. 4 and Tables 1, 4. 

c + 2 h  c 1 + 2 % + 2 h  l r = = = ~ co + 2rca + La 6.939 A. 

Table 4. Bond lengths and model potentials of branched and cyclic molecules 

Model 
Molecule r~(A) ~ potential cl(A) c2(A) c3(A) h(A) 

Ethene CC 1.339 Fig. 4 0.670 0.363 0.363 2.772 
CH 1.086 

Butatriene CC 1.30 Fig. 4 0.66 0.37 0.37 2.77 
CH 1.09 

Hexapentaene CC 1.30 Fig. 4 0.66 0.37 0.37 2.77 
CH 1.09 

Cyclobutadiene CC 1.44 Fig. 5 0.72 0.09 0.72 3.05 
CH 1.09 

Benzene CC 1.397 0.699 0.117 0.699 3.016 
CH 1.084 

Refs. [59] and [60]. 
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Equat ion (28) is t ransformed into:  

c L c 
c + 2h = Lc + 2La = 0.201. 

We obtain the values c = 1.392 A, h = 2.774 A and c2 = 0.361 A, since ca = 
�89 = 0.670 A is given. The values f o r  other branched molecules are given in 
Table 4. 

For  the ground state ionization energy of  ethene, I shall derive a simplified formula, 
presuming that  ~bl~ and IPI~ are affected by the potential walls at x2 = cz and 
x3 = c8 only. 

The symbols k and A have been defined in Eq. (4) and x denotes 

~/ 2rn( IP  - U~) (30) 
t~= h 

The branching conditions Eqs. (26) and (27) on ~bb(x0) = % cos (kxo + 3~) yield: 

~1 cos 3z = ~2 cos 82 = ~3 cos 3a, (31) 

3 

~.  k% sin 30 = 0. (32) 
0 = 1  

Because o f  the symmetry,  it is ~2 = % and 82 = 83, thus:  

tan 31 + 2 tan 32 = 0. (33) 

For  xl = cl, the symmetry o f  ~bl~ demands:  

cos (kcl + 31) = 1, (34) 

31 = mr - kcz, (35) 

tan 31 = - t a n  (kcl). (36) 

For  the potential wall at x2 = c2, the conditions for ~b2(c2) and [~b'2(c2)]/[~b2(c2)] 
become:  

~2 cos (kc2 + 32) = 72, (37) 

k tan (kc2 + 32) = x. (38) 

The addition theorem for the tangens function and the combinat ion of  Eqs. (33), 
(36) and (38) yield: 

tan (kc2) + tan 32 = tan (kc2) + �89 tan (kcl) K (39) 
tan (kc~ + 32) = 1 - tan kc2. tan 32 1 - �89 tan (kc2) tan (kc~) = Ic" 

Finally we obtain:  

tan kcl = 2 K - k tan kc2 (40) 
tan kc~ + k" 

For  the excited state ~r*, we get tan 32 = - � 8 9  cot  (kc 0 instead o f  Eq. (36), with the 
consequence that  tan (kcl) in Eq. (40) has to be substituted by - cot  kc~. By taking 
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Table 5. Equations determining the eigenenergies for the model potentials of some 
branched and cyclic molecules 

Molecule Orbital Equation s 

Ethene lrr, 2~r 2cot (k~rcc) + 2Tc,~ - (2To,0 -1 = 0 
Cumulenes all ~r, 

with ~h >I 2 
Cyclobutadiene l~r 

2~r 
Benzene 1 ~r(a2u) 

2~r(elg) 
31r(e2~) 

2 cot (k, Y~ rcc) + 2To,, - (2To,,) -1 = 0 
tan ( k l c l )  + tan ( k l c s )  - Tc,~ = 0 

tan (k~c~) - cot (k2e3) - To,2 = 0 

2 tan ( k l c O  - To,1 = 0 
tan (k2cl )  - cot (k2rcc) - To,2 = 0 
cot (kacz) + cot (karcc) + To,3 = 0 

Tc.~ is defined in Eq. (41). 

into account  the potential walls A U --- Ua at the distance c2 + h f rom the joint  atom, 
the value K / k  in Eq. (39) has to be multiplied by [A + K tanh (Kh)]/[~ tanh (~h) + K]. 
This factor is practically unity for ~h >1 2. The equations determining the eigen- 
energies for the model-potentials o f  ethene and even cumulenes are given in 
Table 5. 

2 . 4 .  C y c l i c  M o l e c u l e s  

For  cyclic molecules, the only additional feature in the CAB modelJs the incorpora- 
tion of  cyclic boundary  conditions for the continuity of  ~b and ~b' along the bond  
skeleton. For  branched cyclic molecules, the Kuhn  branching conditions, Eqs. (26) 
and (27), are applied and the separate coordinates for each branch are introduced 
analogously to Sect. 2.3. Cyclobutadiene and benzene will be treated as examples 
for branched cyclic molecules. Figure 5 symbolizes the skeleton and the model- 
potential o f  a cyclobutadiene molecule. As the boxes of  carbon and hydrogen 
overlap along the branch connecting the two atoms, it is divided into two parts as 
demonstrated for the ethene molecule in Sect. 2.3 (Eqs. (28) and (29)). 

Fig. 5. Cyclobutadiene: CAB model 
potential along the branched bond 
skeleton 
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Since the differentiation between the singlet and triplet states of  cyclobutadiene is 
beyond the intention of this first approximation, a non-alternating bond length of 
rec = 1.44/~ is assumed for simplicity. The bond lengths and the cb values for 
benzene are given in Table 4. Similarly to the derivation in Sect. 2.3, it is presumed 
that Kh /> 2. The equations determining the eigenenergies for the model potentials 
of  cyclobutadiene and benzene are given in Table 5, with Tc,~ standing for 

K, - ki tan (kic2) 
To., = k, + ,q tan (k, c2)" (41) 

3. Results of CAB Calculations for n-electron Systems 

The calculated vertical ionization and excitation energies are collected together with 
the relevant experimental data in Tables 6-8. It  was intended to test the model on 
molecules containing atoms of as many rows of the periodic system as reliable 
experimental data allow for. The molecules chosen for these calculations were 
selected accordingly. The calculated energies are in very satisfactory agreement with 
the experimental data not only for molecules containing first-row atoms but for 
those with heavy elements as well. The mean and the standard deviations are 
0.540 eV and 0.731 eV resp. They drop to 0.509 and 0.647 resp., if the 1P(rr,,) of Fz 

is excluded. The best linear fit for 70 ground state w-orbital energies is IPv(cal) = 

(1.002 ___ 0.025)IPv(obs) + (0.179 + 0.33,3)eV with a correlation coefficient r = 
0.979 (Fig. 6). 

Since singlet-triplet-splitting is not yet included in the model, the calculated 
excitation energies have to be related to average experimental values. Thereby, 
appropriate weighting is given for multiplicity, e.g. for ethene AEv(1B1,) = 7.6 eV, 

AE~(aBI~) = 4.3 eV [85], thus AE~ = 5.1 eV. Adiabatic excitation energies AEaa 
may also be calculated by accounting for the different equilibrium distances in the 

excited state. Observed AE values could be obtained for 23 molecules only. The 
mean and the standard deviations are 0.388 eV and 0.529 eV resp. The best linear 

fit is AE(cal) = 0.933AE(obs) + 0.316 eV with a correlation coefficient r = 0.987. 
For all the 93 ground and excited states allowing a comparison between the 
calculated and the observed ionization energies, the linear regression yields 

IPv(cal) = (l.014 + 0.016)IP~(obs) + (0.131. + 0.175)eV with a correlation coeffi- 
cient r = 0.990. The mean and the standard deviations between calculations and 
experiments become 0.531 eV and 0.707 eV resp. 

The good agreement obtained for a large variety of  molecules encourages the 
prediction of Tr-electron energies of  some unstable molecules (C2, C3, cyclobutadiene) 
and transient reaction intermediates (HBO). The values predicted by the CAB 
model are in good agreement with the predictions by other models 1. 

i In calculating the AE, value for HBO, the effect of the hydrogen atom is considered. The 
model potential is not of the type III (Fig. 3) anymore, since the wall between the B and H atoms 
reaches only the level U = - Ua = -4.17 eV. 
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Table 6. ~r-electron ionization and excitation energies: homonuclear molecules 

/e~(eV) zXEo(eV) 
Mole- 
cule Orbital obs.~'b; average; CAB Transition obs." CAB 

B2 

C~ 

Ca 
Na 

02 

08 

Fz 

Siz 
Pz 

S~ 

Clz 

Sez 

Brz 

Te2 

Jz 

~r~,2p 9.70 ~,,2p --~ ~rg2p 
.f(12.55)o \ 

,r~2p ~. 12.0 +_ 0.6 d]  12.52 rr~2p--+ ~rg2p 

~ru2p (12.92) f 13.33 ~r~2p ~ *rg2p 
~r~2p 16.96 16.84 ~r,2p --+ ~r~2p 

f 16.82 h" ] 
) 17.73 

~r~2p / (20 .2  ) [ 19.1 19.23 

L 24.0 J 

f12.31 hq 
~rg2p ~ 1 1 . 3 2 ~  11.56 11.16 ~r~2p-~rr~ad 

~10.67 J 

l~r 20.3 20.54 
2rr (15.57) h 16.08 2~r --~ 37r 
~r~2p 18.98 22.24 
%2p 15.83 15.19 ~'g2p ~ ~',~3d 
~r~3p 9.45 ~ru3p ---> ~rg3p 
*r~3p 10.62 k 11.7 ~r~3p ~ %3p 

[1182  1 
12.33 ~ 

~ra3p ~}, (14.2) [ 13.21 14.12 

15.58 J 

%3p 9.41 9.61 ~'~,3p --+ m,4d 
~'u3p 14.40 15.30 
7rg3p 11.59 12.09 ~ro3 p --~ ~r,4d 
~r~4p 11.89" 12.41 
%4p 9.13 9.01 9.34 7rg4p --~ ~r=5d 

8.89 
7r~4p 12.77 12.93 13.2 

13.08 
~g4p 10.56 10.74 11.2 ~rg4p ----> ~r=5d 

10.95 
~r=5p 10.58 ~ 10.56 
~r~5p 8.77 8.54 8.83 7rg5p --* =~6d 

8.30 
~ru5p 11.82 11.43 11.8 

11.03 
~rg5p 9.97 9.66 10.5 7rg5p --~ ~r~6d 

9.35 

(5.0 ad.) e 

~ 3  
9.12 g 

~ I 1  

~13  l 
(3.05) j 
3.4 ad. 1 

( > 8.3) 

> 8.2 0 

3.90 

~ 5.67 v. 
4.97 ad. 
3.44 
7.76 

10.53 

7.09 

11.97 
3.13 
3.5 ad. 

7.52 

10.17 

7.43 

9.4 

7.02 

8.9 

a Ref. [59]. 
d Ref. [68]. 
g Ref. [71]. 
J Ref. [74]. 
m Ref. [77]. 

b Ref. [61]. 
e Calc. in Ref. [69]. 
h Ref. [72]. 
k Ref. [75]. 
n Ref. [78]. 

e Calc. in Ref. [67]. 
f Calc. in Ref. [70]. 
l Ref. [73]. 
i Ref. [76]. 
~ Ref. [79]. 
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Table 7. ,r-electron ionization and excitation energies: unbranched heteronuclear molecules 

IP,,(eV) AE,,(eV) 
Mole- 
cule Orbital obs. ~'b CAB Transi t ion obs. ~ CAB 

HB 2p~r 7.2 ~ 7.28 ~r --+ 7r* 5.16 
H C  2p~r 9.24 4- 0.22 d 9.18 7r--+ 7r* 7.06 
H N  2pTr 12.16 11.72 7r ~ zr* 10.0 9.73 
H O  2pTr 13.17 12.94 7r ~ 7r* 11.04 
H F  2pTr 16.06 15.00 ~r ~ =* 13.0 e 13.12 
HS 3prr 10.5 _+ 0.1 ~ 10.10 lr--~ ~r* 7.89 
HC1 3pzr 12.74 11.70 ~r --+ ~r* 9.54 
HBr  4p~r 11.62 10.8 ~r ~ ~r* 8.5 
HJ  5p~r 10.41 10.1 ~r ~ ~r* 7.6 
HBO l~r (14.29) ~ 13.93 br  -+  2~r 6.66 l 
C N  17r - -  14.97 llr -~  27r 6.4 ad. ~ 6.33 ad. 
CO lzr 16.91 16.29 br  0+ 2~r 9.2J 8.52 
CS Dr 12.92 13.52 Dr -+  2~r 5.4 k 5.41 

N O  Dr 17.6 18.09 
2~r 10.0 10.02 27r ~ 3~r 9.80 

N 2 0  Dr 18.23 18.68 
2rr 12.89 14.22 27r -~  37r 6.9 j 7.60 

SO br  15.971 17.43 
2~r 9.732 9.90 27r --+ 3~r 8.87 

CH2 2p~" 9.35 TM 9.0 2pTr ~ 3drr 7.71 m 6.7 
NH2 2p~r 11.4 11.58 2p~r --+ 3d~r (9.1) 9.31 
H20  2pTr 12.61 12.71 2pzr -+  3dTr 11.12 10.52 
H2S 3pTr 10.47 10.13 3prr ~ 4dzr 7.57 
H2Se 4p~r 9.88 9.64 4pTr --+ 5drr 6.96 
H~Te 5p~r 9.14 8.95 5p~r --+ 6d~r 6.10 
N C N  br  15.65 

27r 13.11 2rr-~ 3~r 7.96 
CO~ br  17.6 16.78 

2~r 13.8 ad. 14.40 27r --+ 3rr ~9 .0  ~ 9.50 
CSz br  13.7 14.27 

2zr 10.08 11.74 2~r --+ 3~r 5.39 
CzH~ l~r 11.41 11.83 l~r ~ 27r ~6 .5  ~ 6.52 
C2N~ br  15.47 15.23 

2~r 13.8 14.02 2~r --+ 3= 5.52 ~ 5.01 
C~F~ b r  18.5 ~ 18.4 

27r 17.7 ~ 18.0 
3~ I 1.3" 10.6 3rr --+ 4rr 6.8 

a Ref. [59]. b Ref. [61]. 
~ (10.06-2.86)eV, Refs. [80] and [59]. 
a Weighted mean of  the ~r2~r and CrTr 2 states. 
e Ref. [81]. ~ Ref. [68]. g Ref. [62]. 
h Ref. [59] and Schaefer I I l ,  H. F. :  Electronic structure of  a toms and molecules. Reading, 

Mass. :Addison-Wesley  1972. 
l See footnote  on page 291. 

Ref. [71]. k Ref. [82]. 
~Ref. [78] and Clark, W. W., deLucia, F. C.: J. Mol. Spectry. 60, 332 (1976). 
m Weighted mean of  the states 1~, ~, g with AE()~, ~) = 1.3 eV. n Ref. [83]. 
o Ref. [84], p. 207. P Haink,  H. J., Jungen, M. : Chem. Phys. Letters 61, 319 (1979). 
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Table 7--Continued 
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1P~(eV) AE,(eV) 
Mole- 
cule Orbital obs. ~.b CAB Transition obs. a CAB 

ca02 l~r 15.82 15.9 
2~r 14.85 15.5 
3~r 10.8 11.6 3~r -+ 47r 4.95 ~ 4.9 

C,Hz l~r 12.62 13.54 
f l0 .17b ' /  

2= U0.79a j 10.73 2~r --+ 37r 4.4 p 4.27 

C4N2 1~ 14.95 14.9 
27r 14.16 14.5 
3~r 11.84 12.2 3~r --+ 4~r 3.4 

N2Fz 17r 19.80 21.0 
27r 20.1 
2a~(31r) 14.1 14.7 3~r --+ 41r 6.7 

XeF2 57ru 12.65 12.8 ~ru --~ ~rg (6.5) 

I n  a d d i t i o n  to  the  genera l  ag reemen t ,  several  special  fea tures  o u g h t  to  be  po in t ed  

out .  

1) T h e  g o o d  resul ts  fo r  h e t e r o n u c l e a r  molecu les  t oge the r  w i th  the  p r o p o r t i o n a l i t y  

be tween  the  po ten t i a l  dep th  UA and  the  e lec t ronega t iv i ty  va lue  X (Tab le  1) a re  

pa r t i cu la r ly  sa t i s fac tory  f r o m  a concep tua l  p o i n t  o f  v iew a n d  suggest  a s imple  

i n t e rp re t a t i on  o f  the  empi r i ca l  e l ec t ronega t iv i ty  scales. 

2) The  effect o f  h y d r o g e n a t i o n  on  7r-electron systems is a c c o u n t e d  for  as shown  by  

the  series o f  c o m p o u n d s :  C2, C2H2 a n d  C2H4. This  is fu r the r  i l lus t ra ted  by  the  

resul ts  wi th  m o n o -  and  dihydr ides .  

Table 8. 7r-electron ionization and excitation energies: branched and cyclic molecules 

IPv(eV) AEv(eV) 

Molecule Orbital obs. a CAB Transition obs. CAB 

Ethene l~r 10.51 9.83 l~r --+ 27r 5.1 b 4.80 
Butatriene l~r 11.780 13,01 

2~r 9.30 ~ 9.49 27r -+ 3~r 3.51 
Hexapentaene 1 ~r 13.84 

2~r 11.96 
3~r 9.33 

Cyclobutadiene l~r 11.66 a 11.76 
2~r 8.50 a 8.11 2~r --+ 3~r 4.0 

Benzene l~r (a2~) 12.25 11.78 
2~r (elg) 9.25 10.03 elg ~ e2u 4.85 ad. ~ 4.72 

a Ref. [61]. b Ref. [851. ~ Ref. [86]. 
o Parmenter, C. S. : Advan. Chem. Phys. 22, 365 (1972). 

a Ref. [87]. 
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22 
I Py (cal) 

eV 
NLF2 

02 
N " N20 

,8 so  

/~ .~Cg  CO2 ~ z 

16 N% c2~. "%~ 

14 CS. /C2N2 
XeF~/,OH 

12 CS C 2 H t 2 ~ . , ~  
�9 N H2; ~,,~H -HC L 

l o  L~#./..HS/H2S - -  �9 

C~/IH.2S e r : 0.979 
H2~_ ; 'CH 2 for 70 'E-orbitQls 

8 Z "D ~{ob,) 
'HB~ , ~ , ~ , j , , , ~ e. V 

8 10 12 14 16 18 20 

F ig .  6. Ca lcu la ted  and  observed g r o u n d  state i o n i z a t i o n  energies 

3) Free radicals like CH2, NH2, OH, and NO are calculated to the same accuracy 
as closed-shell molecules, provided we compare to singlet-triplet-averaged values. 

4) Polyenes and other molecules with alternating bond lengths are not treated. 
A refined model will take care of the alternation through the introduction of 
small potential barriers. However, the highest occupied MO can be calculated 
by this simple model, since the barriers coincide with the nodes of the HOMO 
wavefunction, e.g. diacetylene. Then, as far as IP~oMo is concerned, the potential 
barriers become ineffective. The same applies to the ground state of XeF2. 
Although the boxes leave a gap, the barriers can be neglected and the model 
potential V (Fig. 3) is adequate. On the other hand, the excitation energy will 
be too small without barriers. 

Summarizing the results, it can be stated that despite their simplicity, the CAB 
calculations of first and higher 7T-electron ionization energies are about as good as 
those of any other model available. This holds especially if we include molecules 
with heavy elements such as Br, Te, J and Xe. The CAB model is superior to most 
other models concerning its efficiency to calculate excitation energies using the same 
parametrization as for ground state calculations. 

4. The Physical Basis of the CAB Model 

In this section, it will be shown that the assumptions made in the CAB model are 
physically meaningful and reasonable. Physical arguments will be given explaining 
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the good results obtained in Sect. 3. It will be shown that the CAB model can be 
extended to g-electron systems. 

The crucial assumption is that of a constant potential within an atom. In fact, the 
FEMO assumption of a constant potential within a homonuclear molecule has also 
been criticized [13, 88] by arguing that the potential experienced by an electron 
should be a superposition of shielded Coulomb-potentials. For the special case of 
2p~r-electron systems, H. Kuhn and collaborators [7, 89, 90] have shown that the 
projected electron density method [7, 89-92] leads to a fiat one-dimensional wave 
shape potential. For 2p~r-electron systems with nonalternating bond lengths, this 
flat potential can be replaced by a potential box [7, 90]. Until now, no theoretical 
arguments have been presented for the similar adequacy of a box-model in the case 
of nprr- and ndzr-electrons with n >/ 3. Apparently, the radial nodes of such atomic 
orbitals overcomplicate the picture. Finally, for a-electron systems, a constant 
potential around the nuclei has been considered to be particularly unrealistic [88]. 
On the other hand, FEMO was applied to a-electron systems with remarkable 
success [12, 93-97]. This cannot be explained, as was attempted, by "the overriding 
importance of distance parameters in calculating energies" [93]. 

The explanation is that the arguments against a constant potential were concerned 
only with the electrostatic part of the problem and the Pauli principle must also be 
considered. In the discussions pro and contra FEMO it has remained completely 
unnoticed that the fundamental theoretical arguments for a constant potential were 
given by Hellmann [15-18] and Gomb~is [19, 20]. 

Hellmann showed that the influence of the atom core on the valence electrons 
including the orthogonality requirement can be represented by a pseudopotential, 
i.e. a superposition of the electrostatic potential and a repulsive potential represent- 
ing the Pauli exclusion principle. The core electrons enter the picture only to 
determine the exact form of the pseudopotential, and the problem is effectively 
reduced to the valence electrons. The theoretical derivations [16-20, 98-100] show 
that pseudopotentials are nonlocal and very complicated inside the core. Yet, it is 
possible to use simple model-pseudopotentials to reproduce many advantages of 
the pseudopotential theory. 

Hellmann's first model-pseudopotential [15] was derived by treating the atom core 
according to Thomas-Fermi [21, 22] and the valence electrons according to 
Schroedinger. A valence electron experiences the potential of the Thomas-Fermi 
ion core of radius R0: 

I -Uo- - -  ( Z - N )  e 2 
Ro r ~< Ro 

(42) 
U ( r )  = ( Z  - N )  e 2 

r >  Ro 
r 

N is the number of electrons in the core. The valence electrons are free within a 
sphere of radius R0, dependent on the nuclear charge Z and the quantum numbers 
n and l [17, 18, 20]. Since the values of R0 are often larger than the bond radii [20, 
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27-29, 33-39, 101], regions with free valence electrons can overlap in molecules and 
solids. It is important for molecular calculations that the repulsive part of a pseudo- 
or model potential is equivalent to the Pauli principle with respect to all valence 
electrons in a molecule, independent of the atom from which they originate [I 6-20]. 

Corrections accounting for exchange [23, 101], correlation [102, 103], and the 
electron density near the nucleus [17, 104, 105] do not change the form of this 
model pseudopotential [18, 20]. The corrections permit the extension of  the 
Thomas-Fermi approximation to small atoms and even to hydrogen [18, 20, 103]. 
However, Hellmann's model is not justified for ls-orbitals, since there is no lower 
orbital to do any cancelling of  the electrostatic potential 2. For p-, d-,f- etc. orbitals, 
the centrifugal kinetic energy term [h21(l + 1)]/2mr 2 in the radial Schroedinger 
equation should be added. In the case of  2p- and 3d-orbitals, it somewhat 
compensates for the lack of a " l p "  and " 2 d "  orbital, respectively [17, 108]. 

Comparing different forms of model pseudopotentials, Abarenkov and Heine [27] 
obtained the best results with potentials U,,~(r) that are constant inside the core. 
According to Weeks, H/tzi and Rice [38], the model pseudopotentials suggested by 
the exact pseudopotential theory of Phillips and Kleinmann [100] are also of this 
type. For some purposes this model pseudopotential can be treated as local and 
eigenvalue independent [17, 26]. 

The eigenfunctions of the pseudo-wave equation with U(r) as given in Eq. (42) are 
separable into a " smooth" ,  nodeless radial part and the appropriate spherical 
harmonic [16, 18]. The mathematical problem has been solved explicitly by different 
authors [106, 109-111]. Taking into account the centrifugal kinetic energy term 
[h2l(l + l)]/2mr 2, the np- and (n + 1)d-pseudowave functions correspond closely to 
the 2p- and 3d-Slater functions, respectively [16, 18]. Thus, the complications caused 
by the radial nodes are circumvented by this approach. For np~r-electrons the proof 
of a flat and eventually constant one-dimensional box-potential is effectively 
reduced to the 2p~r-problem treated by Kuhn et al. [90]. Obviously, the projections 
of ns- and nd-electron densities lead to similar, but probably not identical flat 
potentials inside the core. Therefore, constant one-dimensional core potentials are 
reasonable for both ~r- and a-electron systems. 

Outside the core region, the model potential may be simplified for mathematical 
convenience. However, in studying interatomic interactions, the valence electron 
wavefunctions outside the core are eminently important. It has been pointed out 
[112] that both Hiickel and SCF calculations are not able to describe the properties 
of the ground state and excited states with the same set of parameters, because no 
care is taken of the considerably different orbital exponents. The accuracy obtain- 
able with a given model potential depends on whether it imposes the proper 
boundary conditions [37]. It is therefore highly relevant for its good results that 
the CAB model potential imposes exponential eigenfunctions outside the box and 

On the other hand, Hauk and Parr [106] have had very satisfying results for the ls~r ground 
state of H~- by using a "phantom centre molecular puff" potential which has the shape of that 
in Eq. (42). For a proton-pseudo-potential based on dielectric screening see Ref. [107]. 
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that their orbital exponents have the correct relation to the respective orbital 
energies. Thus, in the approximation used in this paper (cf. Sect. 2.1), the first and 
second eigenfunctions of  the atomic potential box (Figs. 1, 2) closely correspond to 
the projected electron densities of the 2p- and 3d-orbitals in the case of first-row 
atoms, of the np- and (n + 1)d-pseudo-orbitals of  heavier elements respectively. 

It  can be stated that the potential choosen for the CAB model, far from being 
unrealistic, accounts fairly well for the influence of the core on a valence electron. 
Being based on the correlation-corrected Thomas-Fermi-Dirac  model, it even 
takes into account the Coulomb, exchange and correlation interactions of the core 
electrons. 

The interactions between the valence electrons are not considered formally. But, by 
fitting to experimental data involving atomic ground and excited states, the 
semiempiricism of the model potential will include effects not considered in formal 
theory, such as exchange and correlation interactions including the valence electrons 
[16-18, 113]. Relativistic effects for molecules with heavier atoms are also taken 
into account semiempirically. It  has been pointed out by Chang et al. [41] that 
model potentials are the only simple device to do so. 

5. Conclusions and Outlook 

The study in this paper has shown that it is possible to calculate good values for 
the first and higher ionization and the first excitation energies of 7r-electron systems 
by a conceptually and mathematically very simple model. One important feature is 
that no change in parametrization is needed for the ground and excited states. The 
physical reasons for this success have been established. 

The next  step in the development will account for all valence electrons and the 
nuclear repulsion, in order to calculate equilibrium distances, dissociation energies 
and dipole moments. Electron interactions responsible for the singlet-triplet- 
splitting will also be considered. According to first calculations, good results can 
be obtained without essentially complicating the picture. This will be published in 
forthcoming papers. 
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Note added in proof 

For CS2 the IPI,~ = 13.7 eV (Table 7) is the centre of mass of the bands discussed by Schirmer. 
J., Domcke, W., Cederbaum, L. S., von Niessen, W., Asbrink, L.: Chem. Phys. Letters 61, 30 
(1979). 


